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Momentum really works

Provably improving on SGD

Why momentum still works in practice?

nce of initialization and momentum in deep learning

Class MomentumOptimizer
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. Deeply |nfluent|al SGD means SGD + Momentum.

* Rigorous understanding lacking.

* This work: initiates understanding of Heavy Ball (HB)
Momentum [Polyak, 1964] and Nesterov’s Acceleration
(NAG) [Nesterov, 1983] with stochastic gradients.

* Gaussian inputs: HB/NAG no speedups on SGD.

 Accelerated SGD [Jain, Kakade, Kidambi, Netrapalli, Sidford

2017]: 0(\/710g1/e)
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Problem setup and folklore results

Empirical validation

* Sole reason: Mini-batching!

* Stochastic gradient — exact gradient.
* Smith et al., ICLR 2018: increased batch size allows using
larger momentum”. See right. e
* Batch size used in their work:

» Blue = 8K, red/green = 14K,
purple/yellow = 19K.

et accur

Momentum 0.9

— Momentum 0.95
= Momentum 0.95
= Momentum 0.975
Momentum 0.975

Validation s

2000 4000
NMumber of parameter updates

* 'n” examples: (xq1,V1), (X5, V) ~ D(Rd X R)
 Ultimate Goal: w* = argmin L(w) = E[(y — (w, x))*].
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* GD:O(k;plog1/e) iterations.
* NAG/HB: @(\/%log 1/6) iterations.
e SGD [Jain et al. 2016]: O(x log 1/€) iterations.

» Assumes realizable model: y = (w¥, x).
» Applicable to general agnostic case. Refer to paper.

Stochastic HB doesn’t improve on SGD

* Rigorous proof with an example

HB + Stochastic Gradients requires Q(x log 1/¢) iterations.

 Empirically, appears true for Gaussian inputs.
 Empirically, lower bound holds for NAG.

HB/NAG: No improvement over SGD on generic instances.
 This result is not a worst case characterization!
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Autoencoder: batch size 1(left), 8(right).
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Resnet-44 [He et al. 16] on CIFAR-10 with batch size 128:
* Exhaustive grid search comparing HB/NAG with ASGD.
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e Test 0/1 Error (left) and Train Cross-Entropy (rlght)
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Broader perspective(s)

* (Classical optimization: immense practical impact.
* Sharp theory often lacking.
* Rethink large-scale learning [Bottou & Bousquet’08] using
stochastic approximation.
* Goal: understand and improve SGD on per-problem basis.
1. Jain, Kakade, Kidambi, Netrapalli, Sidford 2016:
understands SGD’s parallelization properties.
2. Jain, Kakade, Kidambi, Netrapalli, Sidford 2017: first
method (ASGD) provably faster than SGD.
* Plenty of impactful questions open.

Concluding remarks

 Be(a)ware of employing deterministic optimization
methods with stochastic gradients.

* Exciting speedups observed due to mini-batching.

* Significant gains using dedicated stochastic methods.

* Accelerated SGD is the only one known algorithm.

* Many such algorithms/insights still required.




